Vex_Iq

🤖 VEX IQ Engineering Progress

Pg 1, The Table of Contents is next bc I wanted this to be the readme

🗓️ Timeline of Robot Development

🛠️ Code Changes

Version 1.0.3

Version 1.0.2

Version 1.0.1

Image of recent robot changes

Full Changelog: Code V1.0.1 Changelog

🌟 Web Tools Updates

Calculator Tool

Performance Checker Tool

Rules Summary Tool

📱 Compatibility

🔜 Upcoming Features

Full Changelog: Code V1.0.1 Changelog

Software Notes

Version 1

Vision Tracking System

Please Check if your system can run this code by looking at my recomended specs for this code

1. Basic Concept

The system tracks yellow balls going into goals by:

  1. Detecting the yellow color
  2. Monitoring specific areas (goals)
  3. Tracking when balls enter and exit goals
  4. Calculating scores based on these movements

2. Key Features

Color Detection

The system first needs to know what “yellow” looks like. It lets users click on a yellow ball to sample the color:

def sample_yellow_color(self, frame):
    """Sample yellow ball color from user click"""
    print("\nYellow Ball Color Sampling:")
    print("1. Click on a yellow ball")
    print("2. Press 'r' to resample")
    print("3. Press 'c' when satisfied with the color")
    
    # When user clicks, we get the color at that point
    if sample_point:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        color = hsv[sample_point[1], sample_point[0]]
        
        # Create a range around that color
        self.lower_yellow = np.array([max(0, color[0] - 10), 100, 100])
        self.upper_yellow = np.array([min(180, color[0] + 10), 255, 255])

This creates a color range that will be used to detect yellow balls throughout the video.

Goal Detection

The system needs to know where to look for balls. It can automatically detect goals or let users manually select them: Python

def auto_select_goals(self, frame):
    """Automatically detect goals with manual fallback"""
    try:
        # Convert to HSV for yellow detection
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        
        # Find yellow goal borders
        yellow_mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
        contours, _ = cv2.findContours(yellow_mask, cv2.RETR_EXTERNAL, 
                                     cv2.CHAIN_APPROX_SIMPLE)
        
        # Look for square/rectangular shapes
        goal_contours = []
        for contour in contours:
            if len(approx) == 4:  # If it has 4 corners
                # Check if it's roughly square shaped
                x, y, w, h = cv2.boundingRect(contour)
                if 0.7 < float(w)/h < 1.3:
                    goal_contours.append(approx)

Score Detection

The system monitors each goal area for ball movement. Here’s how it works: Python

def process_frame(self, frame):
    """Process single frame to detect scoring"""
    current_time = time.time()
    
    for i in range(4):  # For each goal
        # Check if there's yellow in the goal area
        yellow_pixels = cv2.countNonZero(cv2.bitwise_and(yellow_mask, center_mask))
        
        # Determine if goal is empty
        is_empty = yellow_pixels <= 50
        was_empty = self.goal_states[i]['is_empty']
        
        # Track when balls enter/exit
        if is_empty and not was_empty:
            self.goal_states[i]['last_empty'] = current_time
        elif not is_empty and was_empty:
            self.goal_states[i]['entered_time'] = current_time
        
        # Score detection logic
        if not is_empty:
            # Check if this is a valid score:
            # 1. Enough time since last score
            # 2. Ball was outside goal before
            # 3. Ball entered recently
            if (current_time - last_time >= 0.75 and
                last_empty > 0 and
                entered_time - last_empty >= 0.3 and
                current_time - entered_time <= 0.2):
                
                self.score['goals'] += 1

Performance Optimization

For Windows systems, there are specific optimizations: Python

class RapidRelayScorer:
    def __init__(self):
        # Performance optimizations
        self.frame_queue = Queue(maxsize=2)
        self.result_queue = Queue()
        
        # Windows-specific optimizations
        cv2.setNumThreads(4)  # Optimize for quad-core processors
        
    def process_video(self, source):
        # Windows optimization: Set DirectShow backend
        cap.set(cv2.CAP_PROP_BACKEND, cv2.CAP_DSHOW)
        
        # Optimize buffer size
        cap.set(cv2.CAP_PROP_BUFFERSIZE, 2)

3. How It All Works Together

  1. Setup:
    • User clicks on a yellow ball color
    • System detects or user selects goals
    • System initializes tracking
  2. Processing Phase:
    • Each frame is analyzed for yellow balls
    • System tracks ball movement in goal areas
    • Scores are calculated based on valid movements
    • Data is stored and can be exported
  3. Scoring Logic:
    • Ball must be outside goal first
    • Ball must enter goal area
    • Movement must meet timing requirements
    • Switch bonuses are calculated automatically

The system uses multiple checks to give accurate scoring:

Manual Calculator

1. User Interface Components

Main Layout Structure

<div class="container mx-auto p-4">
    <!-- Three-column grid -->
    <div class="grid grid-cols-1 lg:grid-cols-3 gap-4">
        <!-- Left: Calculator -->
        <!-- Middle: Live Scores -->
        <!-- Right: Analytics -->
    </div>
</div>

Purpose:

Score Input Controls

// Button handlers for score adjustments
const buttons = {
    'increase-goals': () => adjustValue('goals', 1),
    'decrease-goals': () => adjustValue('goals', -1),
    'increase-switches': () => adjustValue('switches', 1),
    'decrease-switches': () => adjustValue('switches', -1)
};

function adjustValue(field, change) {
    const input = document.getElementById(`${field}-display`);
    let value = parseInt(input.value) + change;
    
    // Validation for switches (max 4)
    if (field === 'switches') {
        value = Math.min(4, Math.max(0, value));
    }
    calculateScores(); // Recalculate after change
}

Features:

2. Scoring System

Score Calculation Logic

function calculateScores() {
    let score = 0;
    
    // Get input values
    let goals = parseInt(document.getElementById('goals-display').value) || 0;
    let switches = parseInt(document.getElementById('switches-display').value) || 0;
    let passes = parseInt(document.getElementById('passes-display').value) || 0;

    // Mode-specific calculations
    if (mode === 'teamwork') {
        // Teamwork scoring rules
        if (switches === 0) {
            passes = Math.min(passes, 4);  // Max 4 passes without switches
        } else {
            passes = Math.min(passes, goals);  // Can't pass more than goals
        }
        score = goals + switches + (passes * switchMultiplier);
    } else {
        // Skills scoring rules
        const switchKey = [1, 4, 8, 10, 12, 12, 12, 12, 12];
        score = (goals * switchKey[switches]) + switches;
    }

    updateDisplay(score);
    return score;
}

Functionality:

3. Timer System

Timer Controls

let isRunning = false;
let timeLeft = 60;
let countdown = 3;

function startPauseTimer() {
    if (!isRunning) {
        // Start timer
        isRunning = true;
        if (document.getElementById("countdown-toggle").checked) {
            startCountdown();
        } else {
            startMainTimer();
        }
    } else {
        // Pause timer
        clearInterval(timerInterval);
        isRunning = false;
    }
    updateButtonDisplay();
}

function updateTimerDisplay(minutes, seconds) {
    document.getElementById('timer-minutes').style.setProperty('--value', minutes);
    document.getElementById('timer-seconds').style.setProperty('--value', seconds);
}

Features:

4. Data Management

Score Storage and Export

function saveScores() {
    chrome.storage.sync.set({ 
        scores: scores,
        timestamp: new Date().toISOString()
    });
}

function exportScores() {
    const data = {
        scores: scores,
        mode: mode,
        timestamp: new Date().toISOString(),
        statistics: {
            average: calculateAverage(),
            highest: Math.max(...scores),
            total: scores.length
        }
    };
    
    // Create downloadable file
    const blob = new Blob([JSON.stringify(data)], 
                         {type: 'application/json'});
    const url = URL.createObjectURL(blob);
    downloadFile(url, 'vex-scores.json');
}

Capabilities:

5. Analytics System

Chart Generation

const chartConfig = {
    responsive: true,
    maintainAspectRatio: true,
    interaction: {
        mode: 'index',
        intersect: false
    },
    plugins: {
        legend: {
            position: 'top',
            labels: { usePointStyle: true }
        }
    }
};

function updateGraphs() {
    // Score History
    new Chart(ctx, {
        type: 'line',
        data: {
            labels: timeLabels,
            datasets: [{
                label: 'Match Scores',
                data: scores
            }]
        },
        options: chartConfig
    });
    
    // Additional charts...
}

Features:

6. Theme System

Theme Management

function toggleTheme() {
    const isDark = body.getAttribute('data-theme') === 'dark';
    const newTheme = isDark ? 'light' : 'dark';
    
    // Update DOM
    body.setAttribute('data-theme', newTheme);
    document.documentElement.setAttribute('data-theme', newTheme);
    
    // Save preference
    chrome.storage.sync.set({ theme: newTheme });
    
    // Update charts
    if (document.getElementById('showAllGraphs').checked) {
        updateGraphs();
    }
}

Functionality:

All Info here were made by 45557A Unless otherwise specifyed by the word "official"

Try out our new in house developed tools to help show your performance along with our new code VEX VISION. Able to score your games autonomosly using AI and Machine Learning

Tools

Score Calculator | Rules |

Chrome Extension Rule Summary

Next Page →

Credits

Ultralytics Yolo V8 nano Open CV Daisy UI Tailwind CSS