Full Changelog: Code V1.0.1 Changelog
Full Changelog: Code V1.0.1 Changelog
Please Check if your system can run this code by looking at my recomended specs for this code
The system tracks yellow balls going into goals by:
The system first needs to know what “yellow” looks like. It lets users click on a yellow ball to sample the color:
def sample_yellow_color(self, frame):
"""Sample yellow ball color from user click"""
print("\nYellow Ball Color Sampling:")
print("1. Click on a yellow ball")
print("2. Press 'r' to resample")
print("3. Press 'c' when satisfied with the color")
# When user clicks, we get the color at that point
if sample_point:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
color = hsv[sample_point[1], sample_point[0]]
# Create a range around that color
self.lower_yellow = np.array([max(0, color[0] - 10), 100, 100])
self.upper_yellow = np.array([min(180, color[0] + 10), 255, 255])
This creates a color range that will be used to detect yellow balls throughout the video.
The system needs to know where to look for balls. It can automatically detect goals or let users manually select them: Python
def auto_select_goals(self, frame):
"""Automatically detect goals with manual fallback"""
try:
# Convert to HSV for yellow detection
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# Find yellow goal borders
yellow_mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
contours, _ = cv2.findContours(yellow_mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# Look for square/rectangular shapes
goal_contours = []
for contour in contours:
if len(approx) == 4: # If it has 4 corners
# Check if it's roughly square shaped
x, y, w, h = cv2.boundingRect(contour)
if 0.7 < float(w)/h < 1.3:
goal_contours.append(approx)
The system monitors each goal area for ball movement. Here’s how it works: Python
def process_frame(self, frame):
"""Process single frame to detect scoring"""
current_time = time.time()
for i in range(4): # For each goal
# Check if there's yellow in the goal area
yellow_pixels = cv2.countNonZero(cv2.bitwise_and(yellow_mask, center_mask))
# Determine if goal is empty
is_empty = yellow_pixels <= 50
was_empty = self.goal_states[i]['is_empty']
# Track when balls enter/exit
if is_empty and not was_empty:
self.goal_states[i]['last_empty'] = current_time
elif not is_empty and was_empty:
self.goal_states[i]['entered_time'] = current_time
# Score detection logic
if not is_empty:
# Check if this is a valid score:
# 1. Enough time since last score
# 2. Ball was outside goal before
# 3. Ball entered recently
if (current_time - last_time >= 0.75 and
last_empty > 0 and
entered_time - last_empty >= 0.3 and
current_time - entered_time <= 0.2):
self.score['goals'] += 1
For Windows systems, there are specific optimizations: Python
class RapidRelayScorer:
def __init__(self):
# Performance optimizations
self.frame_queue = Queue(maxsize=2)
self.result_queue = Queue()
# Windows-specific optimizations
cv2.setNumThreads(4) # Optimize for quad-core processors
def process_video(self, source):
# Windows optimization: Set DirectShow backend
cap.set(cv2.CAP_PROP_BACKEND, cv2.CAP_DSHOW)
# Optimize buffer size
cap.set(cv2.CAP_PROP_BUFFERSIZE, 2)
The system uses multiple checks to give accurate scoring:
<div class="container mx-auto p-4">
<!-- Three-column grid -->
<div class="grid grid-cols-1 lg:grid-cols-3 gap-4">
<!-- Left: Calculator -->
<!-- Middle: Live Scores -->
<!-- Right: Analytics -->
</div>
</div>
Purpose:
// Button handlers for score adjustments
const buttons = {
'increase-goals': () => adjustValue('goals', 1),
'decrease-goals': () => adjustValue('goals', -1),
'increase-switches': () => adjustValue('switches', 1),
'decrease-switches': () => adjustValue('switches', -1)
};
function adjustValue(field, change) {
const input = document.getElementById(`${field}-display`);
let value = parseInt(input.value) + change;
// Validation for switches (max 4)
if (field === 'switches') {
value = Math.min(4, Math.max(0, value));
}
calculateScores(); // Recalculate after change
}
Features:
function calculateScores() {
let score = 0;
// Get input values
let goals = parseInt(document.getElementById('goals-display').value) || 0;
let switches = parseInt(document.getElementById('switches-display').value) || 0;
let passes = parseInt(document.getElementById('passes-display').value) || 0;
// Mode-specific calculations
if (mode === 'teamwork') {
// Teamwork scoring rules
if (switches === 0) {
passes = Math.min(passes, 4); // Max 4 passes without switches
} else {
passes = Math.min(passes, goals); // Can't pass more than goals
}
score = goals + switches + (passes * switchMultiplier);
} else {
// Skills scoring rules
const switchKey = [1, 4, 8, 10, 12, 12, 12, 12, 12];
score = (goals * switchKey[switches]) + switches;
}
updateDisplay(score);
return score;
}
Functionality:
let isRunning = false;
let timeLeft = 60;
let countdown = 3;
function startPauseTimer() {
if (!isRunning) {
// Start timer
isRunning = true;
if (document.getElementById("countdown-toggle").checked) {
startCountdown();
} else {
startMainTimer();
}
} else {
// Pause timer
clearInterval(timerInterval);
isRunning = false;
}
updateButtonDisplay();
}
function updateTimerDisplay(minutes, seconds) {
document.getElementById('timer-minutes').style.setProperty('--value', minutes);
document.getElementById('timer-seconds').style.setProperty('--value', seconds);
}
Features:
function saveScores() {
chrome.storage.sync.set({
scores: scores,
timestamp: new Date().toISOString()
});
}
function exportScores() {
const data = {
scores: scores,
mode: mode,
timestamp: new Date().toISOString(),
statistics: {
average: calculateAverage(),
highest: Math.max(...scores),
total: scores.length
}
};
// Create downloadable file
const blob = new Blob([JSON.stringify(data)],
{type: 'application/json'});
const url = URL.createObjectURL(blob);
downloadFile(url, 'vex-scores.json');
}
Capabilities:
const chartConfig = {
responsive: true,
maintainAspectRatio: true,
interaction: {
mode: 'index',
intersect: false
},
plugins: {
legend: {
position: 'top',
labels: { usePointStyle: true }
}
}
};
function updateGraphs() {
// Score History
new Chart(ctx, {
type: 'line',
data: {
labels: timeLabels,
datasets: [{
label: 'Match Scores',
data: scores
}]
},
options: chartConfig
});
// Additional charts...
}
Features:
function toggleTheme() {
const isDark = body.getAttribute('data-theme') === 'dark';
const newTheme = isDark ? 'light' : 'dark';
// Update DOM
body.setAttribute('data-theme', newTheme);
document.documentElement.setAttribute('data-theme', newTheme);
// Save preference
chrome.storage.sync.set({ theme: newTheme });
// Update charts
if (document.getElementById('showAllGraphs').checked) {
updateGraphs();
}
}
Functionality:
Ultralytics Yolo V8 nano Open CV Daisy UI Tailwind CSS